Just one season of football adversely affects a child’s brain development

Football and its relationship to brain health is still very much in the news. In fact, a new study found youth and high school football players who were hit in the head frequently showed signs of damage to their brain development after just one season of playing the sport!

“Football,” said Leanne O’Neil, “is absolutely dangerous to the brain – more so if you are a growing child. We see many football-related injuries here at INDY Neurofeedfack. It’s very troubling.”

In the new study presented at the Radiological Society of North America’s (RSNA) annual meeting, researchers observed 60 youth and high school football players over a single football season. None had prior concussions or histories of developmental, neurological or psychiatric problems.

Twenty-four players were determined to be high-impact players while 36 were placed in a low-impact group (based on each player’s risk of cumulative head impact exposure) according to the Head Impact Telemetry System (HITS), which helps collect data through sensors on the players’ helmets. Most impacts to the head occurred during practice, rather than at actual football games.

Those who experienced a high number of head impacts showed changes in brain pruning, a decrease in gray matter, which controls actions like motor, sensory movements and speech.

“A noticeable disruption in normal pruning means weaker connections between different parts of the brain,” says Leanne O’Neil. “This study found a significant decrease in gray matter pruning in the frontal default mode network of the brain. That’s the area involved in higher cognitive functions, such as planning and controlling social behaviors.”

In related research, the American Medical Association found that 177 former football players, ranging from high school to the NFL, showed some degree of chronic traumatic encephalopathy (CTE). CTE is a degenerative brain disease that has been linked to frequent head trauma.

Another study by Scientific American looked at the long-term risks of playing football. The study found more than 40 percent of former NFL players showed signs of traumatic brain injury.

Still another study, reported by TIME magazine, predicted that children who played tackle football before the age of 12 and continued to play in high school would have trouble managing behavior later in life.

Schools, institutions, parents, and coaches are taking notice, and some amendments to football practice, such as reducing the number of contact drills and the National Football League’s recommendation of the elimination of the “running start,” could help decrease the chances of injury. That said, “No child should be at risk of getting hit in the head at full speed,” says O’Neil. “It’s simply too dangerous.”

Currently, the National Institute of Health (NIH) is in the process of requesting more funding to follow up with these players longitudinally, to see if there are any longterm effects.

Chris Nowinski, Ph.D and the CEO and co-founder of the Concussion Legacy Foundation, went on record to caution parents not to allow their children to play tackle football before high school. “The risks to brain development are simply not worth the perceived benefits,” Nowinski said.

Traumatic Brain Injuries – by the numbers

Because of the way the brain is housed in the cranium, explains Leanne O’Neil of INDY Neurofeedback, an impact from almost any direction can cause damage. Although the brain is incredibly resilient, is it also quite susceptible to injury.

Even relatively minor brain trauma can cause lasting damage, often manifesting in headaches, slurred speech, depression and/or anxiety, fatigue, dizziness, mood changes, or irritability. Sometimes after a TBI (Traumatic Brain Injury) symptoms may be harder to pinpoint and diagnose, and may include reduced concentration, difficulty with memory retrieval, and poor organization and planning.

Here are some fairly startling TBI statistics in the U.S., gathered and published by WebMD:

  • 47% of brain injuries are attributed to falls, the leading cause of TBI.
  • 8 million Traumatic Brain Injuries were recorded in 2013, according to the most recent Center for Disease Control (CDC) data.
  • 153 deaths per day occur from injuries that include a brain injury.
  • 53,000 deaths are attributed to TBIs annually (CDC).
  • $400,000 is the average lifetime cost (per case) for a severe brain injury.
  • An estimated 3.2 to 5.3 million Americans are living with a TBI-related disability.
  • 47% increase in ER visits from TBIs from 2007 to 2013.
  • 70% of all sports and recreation-related brain injuries are reported in people ages 19 and younger.
  • 5% of high school athletes have had a concussion.
  • 5% of all high school athletes have reported more than one concussion.
  • 26,212 non-fatal bicycling-related brain injuries are reported annually.
  • 99% of NFL players in an autopsy brain donation program were diagnosed with brain damage after death.

Unfortunately, Traumatic Brain Injuries are on the rise across the U.S. And frequently, these injuries can be difficult to detect.

That is why INDY Neurofeedback was established; to provide a non-medical way to help those suffering with brain injuries re-gain lost brain function. If you suspect your (or a family member’s) symptoms may be the result of a Traumatic Brain Injury, we are here to help.

 

From Facts and Stats on Trending Health Topics, Matt McMillen, WebMD.com, September 2018.  https://www.webmd.com/brain/ss/slideshow-concussions-brain-injuries

Brain scans suggest soccer is riskier for female brains

We’ve long heard about head trauma due to playing rough sports like rugby and football. But what about soccer? Of particular concern is “heading”, or repeatedly using the head to forward the ball. Studies have found that frequent heading is a common and under-recognized cause of concussion symptoms and may actually cause more damage than the impact from unintentional head-to-head collisions.

Even more revealing, a new study from the Albert Einstein College of Medicine in New York suggests that not only does heading put soccer players’ brains at risk, but that female players may be disproportionately at risk.

Using advanced MRI scanning, Einstein researchers carefully examined the brain scans of 49 men and 49 women, aged 18 to 50 with a median age of 26, who regularly played amateur soccer. Even though both sets of players had headed the ball roughly the same number of times, scans showed that the women had five times more brain tissue damage than the men. Even more surprising, there were more brain matter areas adversely affected in women than the men (eight regions of the brain for women and just three regions for men).

Why the disparity?

Precisely why women might be more sensitive to head injury than men is not known for certain. Researchers have speculated that because women have smaller, less muscular necks than men, heading may impart more rotational force to their heads, jarring the brain within the skull more.

The brain changes detected by the scans were categorized as ‘subclinical’ by the researchers, meaning they were not enough to alter thinking ability. Study researchers were quick to add, however, that subclinical changes are still cause for concern.

So what does this mean?

“The term ‘subclinical pathology’ is often applied before we detect enough brain damage to negatively affect brain function,” says Leanne O’Neil of INDY Neurofeedback. “What is important about this study is that men and women may need to be looked at differently. It makes good sense to identify the risk factors for cumulative brain injury, so those involved in any sport or activity can change their behavior to prevent further damage — and work to help their brains recover.”

What now?

Soccer coaches and researchers agree that a full understanding of the risks of heading while playing soccer will require further research.  In the meantime, O’Neil recommends monitoring brain health by getting a qEEG brain map at the beginning of the season and a follow up at the end.  All brains are unique and the brain’s ability to fully heal from each impact is individual.

Complete article available at https://medicalxpress.com/news/2018-07-soccer-worse-women-brains-men.html.

 

Sports and brain injuries

Bryan is a healthy, active eleven year old that loves sports of every kind. His mother, worried about all the recent news about football-related concussions, was relieved when Bryan chose to attend basketball camp rather than football camp this summer. Despite the seemingly safer choice, Bryan showed the classic signs of a closed head injury (brain trauma) after colliding head-to-head with another basketball player.

Would you know what to look for if your child sustained a closed head injury? It’s a fair question, according to INDY Neurofeedback owner Leanne O’Neil, “Especially since mild to moderate closed head injuries (in children and adults) often get misdiagnosed as something else.”

Contrary to popular opinion, you do not have to lose consciousness to have a serious brain injury. And even mild brain injuries (life’s head bumps) can have a lasting impact on brain function — and people’s lives. In fact, current research suggests that many cases of ADHD, epilepsy, hyperactivity, and/or aggressive behaviors are the result of undiagnosed head trauma.

Here are signs of a closed head injury:

  • Headaches
  • Dizziness
  • Fatigue
  • Poor concentration
  • Poor memory
  • Poor organization and/or planning
  • Mood swings
  • Insomnia
  • Irritability
  • Aggression
  • Poor hearing
  • Slurred speech
  • Depression and/or anxiety

A quick look at the list makes it obvious why these types of injuries get misdiagnosed or undiagnosed. After all, what typical eleven year old doesn’t have occasional poor organization skills, irritability, mood swings or anxiety?

“Head injuries look different depending on the person and the type of trauma sustained,” says O’Neil. “Although the brain is incredibly resilient, it is also quite delicate, so almost any kind of blow can cause the brain to dysregulate. Through a qEEG brain map, INDY Neurofeedback can confirm the existence of dysregulated brainwave patterns and begin to provide training on how to correct the patterns.”

Restoring the brain’s normal rhythms can restore normal functioning health and behaviors. It is a completely non-invasive and drug-free approach to optimal brain functioning.

– the INDY Neurofeedback team